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INTRODUCTION

Traditionally, Lagrangian codes have been used to simulate material response when the

amount of deformation is small. When the deformation is large, Eulerian calculations have

been employed. The Lagrangian calculation is more accurate - the Eulerian calculation has

greater applicability. These strengths and weaknesses are due to the convective derivative

which is absent in the equations written in the moving Lagrangian frame. Numerical

treatment of this advection termn is difficult and introduces inaccuracies into the calculation.

However, if these errors can be made small, the Eulerian calculation can be used to treat a

variety of high strain phenomena.

Various methods have been devised in order to achieve the best features of both approaches.

These "hybrid" techniques normally use two grids, one Lagrangian - the other Eulerian,

with information exchanged between them. These mappings add a good deal of complexity

to the calculation and can also introduce inaccuracies. Nevertheless, many hybrid

techniques have been successful and are widely used today

Unique in computational fluid dynamics is Smoothed Particle Hydrodynamics (SPH). This

technique uses no underlying grid - it is a pure Lagrangian particle method invented by

Lucy [1], Gingold [2,31, Monaghan [4,5,61 and Benz [71. The absence of a mesh means that

large deformations can be computed in a pure Lagrangian frame. It is for this reason that

SPH has the potential to be a valuable computational tool. Although SPH has been proven

an excellent computational tool for astrophysical applications, its ability to treat typical

hydrocode production problems is largely untested at this point. The method is just now

being applied to a broad range of problems where its strengths and weaknesses are sure to

be exposed. OeIC TAB
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THE METHOD

The foundation of Smoothed Particle Hydrodynamics is interpolation theory. The

conservation laws of continuum fluid dynamics, in the form of partial differential

equations, are transformed into integral equations through the use of an interpolation

function that gives the "kernel estimate" of the field variables at a point. Computationally,

information is known only at discrete points, so that the integrals are evaluated as sums over

neighboring points. These "interactions" result in a net force which will accelerate the

"particle". The reason that an underlying grid is not needed is that functions are evaluated

using their value at the discrete points (particles) and an interpolation kernel. An

inte:gration by parts then moves spatial derivatives from operating on the physical quantities

to operating on the interpolation kernel which is an analytic. These concepts will now be

described more fully. Consider a functionf, a kernel W which has a width measured by the

parameter h, and the following equation:

< fr) > f W(r -r', h)fAr')dr'()

If the integral of W is normalized to unity, then it follows that

< ffr) > - Ar). (2)

Relation (1) therefore defines the kernel estimate <f> of f. If W is the Dirac delta function

then we have the equality <f>=f. Now suppose thatf is known only at N discrete points that

are spatially distributed according to the number density distribution:

N

n(r) = Z6(r-rj) (3)
j=I

If we associate with particle j a volume
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dr'= mj (4)

o(rj)

thus introducing the concept of particle mass (m), it follows from (1) that

< f(r) > = 3 )f W(r-rjh)mi (5)

This equation defines a procedure for transforming integral equations to particle equations

and is therefore called "integral evaluation by the particle method." A detailed discussion

of the theory of SPH is given by Benz [7].

DERIVATION OF THE SPH EQUATIONS

The conservation equations of continuum mechanics are:

dQ aup (6)
dt T -' a#

dtr 1 ao'af (7)
dt o axA

dE __o ar (8)
dt L ax#

dxa
and di Ua (9)

Dependent variables are the scalar density (p) and specific internal energy (E), the velocity

vector velocity Ua, and the stress tensor of . The independent variables are the spatial

coordinates (A) and the time (t), and the total time derivative (didt) is taken in the moving

Lagrangian frame. Summation over repeated greek indicies is implied. Let us now cast

equations (6-8) into the SPH framework by applying the procedure outlined above. First,

rewrite the momentum and energy equations, so that the density (p) appears inside the spatial

derivative operator, then find the kernel estimate. The result is
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Wf W~fd~x' WL - -d~dx' (10)
-d'x' fW A(• dX 8,06

Ala - dx5\) (11)

J dt f aO9 xf
and W -dx' 0 td~x' +JW "OL+ a. d3x' (12)

a dt f 7 ax5 f 2 ax 1.x

We now linearize these equations by taking integrals of products equal to products of

integrals (a second order accurate approximation), giving

Sdt Jax

W-Aad~x' - a Ia' W T4 )d3x' f W a9d 3x' ,(14)f dt fe 2D(x) J axe#

adW-dE dx' f !~~W aQLo"d 3X, o"'5(x)Pw -A9-) (15)f dt e 2(X)J ax,# &(x) a O

The right-hand-sides of these equations are now integrated by parts, assuming W

approaches zero fast enough that the surface terms vanish.

I W-L-Od3x' = L W(xLO agod3x' (16)
.1 dt fQ\ X tp

w AP d3x' = of(x') a Wd3X, ' fJQo(x') ' d3xx (17)
f dt f o(x') ax'"I Q2(x) ax

and f Wd' d3x' = Lo2(x) Vx -d3x' + ' 2x)(x) o(x') d x . (18)
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Finally, the integrals are evaluated by the particle method, Eq. (5), to give

-_ _ - - i .-- - &)Wi• (19)
SQj

dUat = :?mj ?+ f , K (20)
di 1 /

and dE, a a)W (21)

We have introduced the notation Wj = W(xi - xj,/h) and a=Wij/•i Wijg. In obtaining (19)

we subtracted from (13) the following term,

Q Wfad3X .= (22)

which is zero because the kernel vanishes at ininity. In this way we introduce velocity

differences into the density calculation, which is desirable and consistant with the energy

calculation in (21). Eqs. (19-21) are the conservation laws of continuum dynamics written

in the SPH framework. A given particle i has a density determined by (19), an acceleration

obtained from (20) and an internal energy change given by (21). The summations are over

neighboring j particles. These equations are not unique. Several other forms of particle

equations can be derived using various mathematical manipulations. Some of these are

discussed by Monaghan [8].

THE DENSITY CALCULATION

It is important to recognize that (19) is not the density calculation that normally appears in

the SPH literature. It is more in the spirit of Smoothed Particle Hydrodynamics to compute

the density using the equation obtained by substituting p for <f> in (5), namely



Qi mjWij (23)

With this equation only particle coordinates and masses are required to compute the density,

and the continuity equation (6) is automatically satisfied. The disadvantage of using (23) is

edge effects - particles near a free surface appear underdense and therefore in tension,

causing motion. Benz [71 discusses several possible solutions to this problem including

spacing modification, ghost particles, and initial relaxation and the use of (19). It is worthy

to note that differentiation of (23) leads to

dQQi _W, - (24)

which differs from (19) only in that ei appears in the denominator rather than ej, We have

not yet explored the consequences of using (24) in place of (19). The difference is of the same

order as the difference between the product of the expected values and the expected value of

the product.

ARTIFICIAL VISCOSITY & WALL HEATING

As; they stand, Eqs. (19-21) yield large unphysical oscillations near shocks. In fact, any

numerical solution of the continuum equations will exibit this behavior because the

dissipative terms have been omitted. Variations of physical quantities across shocks in

nature are far to sharp to be captured by numerical techniques. Von Neumann and

Richtmyer [9] invented "artifical viscosity" which acts to smooth shocks over a few

resolution lengths and stabilize numerical solutions. The additional term is introduced into

the equations as an artifical viscous pressure 1I. We follow Monaghan and Gingold [41 who

derived the following artificial viscous pressure for SPH:
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-aeuj_+i5 if (-)<0 (25)
if (di - j.(i-7j

1 0 otherwise
where

=h(i - j)_-_(_ i -_ ) (26)

(F 7j)2 + Eli2

and

c"j = (ci + cj)/2 Uij = (pi + 0))/2 (27)

The three parameters appearing in these equations have typtical values of ot=0.5, 03=1.0 and

e=0.1. The linear term in (25) uses the sound speed (c). This artifical viscosity gives

satisfactory results in most cases, but under some severe conditions it fails to remove

spurious heating. An example of this is when a stream of gas is brought to rest against a

rigid wall. Noh [10] was able to improve numerical solutions in such cases dramatically by

adding an artificial heat conduction term to the energy equation. Monaghan [111 derived

the SPH analog of Noh's "wall heating" term in which the net artifical heat flux at particle i

is given by

Ej E - Ej roVi Wi(8
Hi = 2 :(28)

where

S=g1/hc + g2h 2(IV'vI-V'v) (29)

and

S= (j+ ýj)/2 = (oi + Qj)/2 (30)

Suitable values of the two parameters appearing in (29) are gI 0.5 and g2 = 1.0.
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CONSTITUTIVE RELATIONS

The stress tensor apperaring in Eqs. (20) and (21) is defined in terms of an isotropic part

which is the pressure (P) and the traceless symmetric deviatoric stress (S):

0 = pYaP - Sao (31)

The pressure is normally computed using an equation of state having functional form

P=P(p,E), such as the Mie-Gruneisen equation for Folids and gamma-law for gases.

Mie-Gruneisen P = PM(1 - F'q) + F'QE (32)

a0 ) + b0 r2 + C'11 > 0

PH=jI

Ideal Gas P = (y- 1)gE (33)

The subscript "H" refers to the Hugoniot curve, while rl=p/po-1 is used to represent the

compression and F'='p/po. For the anisotropic part of (31) we write a prognostic equation for

the deviatoric stress assuming small displacements

Saf == (C M(•--I 6aflr) (34)

where g, is the shear modulus and E is the traceless rate of strain. However, for finite

displacements this equation is not material frame indifferent [121 , that is, the material

response will depend in an unphysical way on rotations (and possibly translations) of the

material and of the observer describing it. A variety of frame indifferent stress rates have

been formulated. Herrmann [131 examines the relative merits of several of these. The

Jaumann rate is the most widely used in codes and we adopt it also. With the Jaumann rate,

our constitutive equation is



Saf - SaYR-•- g/#Ray = /zgaf (35)

The strain rate and rotation rate tensors that have been used are defined as follows:

I (ala a ) a#= I laajf (36)

Particle equations for (35) are obtained by Libersky and Petschek [141 in a manner similar

to that of (19,20,21)

dia it •a + -Di3 (37)
ýR

The divergence is already determined by (19), Di ye -i/p i ,eand the rotation rate is

The plastic flow regime is determined by the von-Mieses criterion when the second stress

invariant J2 = S tart exceeds the known flow stess (Yo). The individual deviators are then

brought back to the flow surface.

Safi -= Sa Yo 3

s e ( 
(39)

A more accurate treatment fir most metals, not yet implemented in our code, is obtained by

computing a history sensitive flow stress, rather than a predetermined fixed value described

above. The Johnson-Cook model [151, for example, takes into account thermal softening,

strain harding and strain rate effects on the equivalent flow stress. This more sophisticated

model contains seven strength related parameters. The elastic-perfectly plastic constitutive

model described above contains two parameters, the shear modulus (it) and the plastic yield

stress (Yo).
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THE KERNEL

The interpolation kernel or smoothing function most widely used in SPH is the B-spline W,4

15-(2-_v2 + 3) I 0<v < 1 v = Iri-rj[/h.

W4(v,h) = ]W3 5 (2-_V)3 1 < v < 2 (40)

14

0 otherwise

The fractional coefficients appearing in (40) assure proper normalization and continuity.

This kernel interpolates to second order in h and is always positive in the range of interest.

The kernel also has compact support, that is, it goes to zero at a distance 2h from its peak.

This provides a clear limit on the number of neighbor particles. A Gaussian kernel is second

order accurate and positive definite, but the lack of compact support necessitates an

artificial cut-off, often taken at v=3, making it less a less efficient choice. Higher order

interpolation kernels exist [5] but are not always positive definite.

TIME INTEGRATION

Eqs. (19,20,21,37) are integrated using a standard leap-frog algoritihm [161 with time step
St, calculated from the configuration at time t, tc advance the field variabled to t + St. We will

switch from superscript tensor indicies to subscripts here in order to accomodate the standard

superscript representation of the time stepping in which n indicates the current time t and

n + 1 indicates the advanced time t + St.
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' =R+ 1 all D~t) (41)

=a t, + !- i (6t" + 6t"0)F (42)

En+= En + 6G (43)

S =5ft +6"H (44)

XA+ = xA + 0+16tA (45)

In these equations FG and H represent the total acceleration of, work per unit mass and

stress rate on a particle as determined by the interactions with neighbor particles. The

accuracy of the leap-frog scheme is second order in time and its stability is guaranteed by

using the CFL condition to determine the size of the time step S&. We find the minimum over

all particles of wb/(c +s), where c is the adiabatic sound speed, s is the particle speed, h is the

smoothing length and o a constant factor. Choosing w = 0.3 seems adequate.

CODE ARCHUTEC•1URE

MAGI differs from most codes in that it was designed from the beginning for application to

very large problems on vecto, supercomputers. Strategies for the efficient implementation

of the SPH method were considered and implemented throughout the design and coding of

MAGI. Vectorization, an efficient neighbor searcher, accomodation for the symmetry of the

particle interactions, and activity flags were all exploited for efficiency and reduced

computation.

Activity flags, which mark particles experiencing motion cr acceleration are used to gain

efficiency. Only active particles and those within a two smoothing lengths of active particles

need to be updated. Stationary, unshocked material remains inactive until impacted by

moving material or accelerated by a shock or stress wave. This capability results in

significant savings in computer time for problems that contain a large number of particles

that are initially unaffected by the impact.
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MAGI consists of a group of subroutines, partitioned by task, that are called in logical

sequence each computational cycle. They accomplish the following tasks that are basic to

the SPH algorithm. (1) Compute the particle interaction sums on each particle to determine

the accelerations, strain rates, and energy increment. (2) Update the velocities, energies,

stresses, and density on each particle. (3) Update the pressure on each particle using the

new density and energy. (4) Advance the particle positions. The subroutines that perform

most tasks consist of a single FORTRAN DO loop that is easily vectorized. The interaction

subroutine, however, is an exception. It consists of nested loops, an outer unvectorized loop

over all active particles, and two inner loops that are indexed over the list of neighbors that is

returned by the linked list described below. Each of the inner loops is vectorized. In the

first, the interaction contributions of particle]i are summed to particle i. The second updates

particle j by contributions from particle i.

The particle interactions themselves are ordered through a linked-list [171 which efficiently

determines the neighbor particles contributing to the forces on each particle. Only those

neighbor particles within the compact support of the smoothing function need to be

considered. The n2 interactions that result from direct application of the SPH formalism,

without consideration of the finite support of the smoothing function, are reduced to order

n log n interactions by means of the linked-list. The interaction lists are further reduced in

length by taking advantage of the symmetry in the interactions and the activity flags.

Reflective boundaries are incorporated through the linked-list routines by means of "ghost"

particles, which are fictitious particles introduced just outside the computational domain to

balance the forces on boundary particles and mimic the effect of perfectly reflecting

boundaries. Outflow boundaries have also been implemented.

The basic linked list algorithm is composed of two separate routines. The first routine

performs several book-keeping functions and is executed only once per problem cycle (time

12



step). This routine begins by calculating a box number for each particle based on its

position and the position of a regular grid overlaid on top of the computational domain (the

area or volume that bound the computational perimeter) if the particle is within twice the

smoothing length (2h) of the computational boundary. Finally, a box-ordered linked-list is

assembled containing all particles (real and ghost) in order of increasing box number. The

number of particles in each box and the box offset (first position) in the linked-list are also

stored. The box-ordered linked-list, box offsets, and number of particles per box are used

in the second routine described below.

The second subroutine is used to find all nearest neighbors for particle i in the hydrodynamic

calculation loop which are subsequently returned in a nearest neighbor linked-list. This is

accomplished by looping over all particles contained in the adjacent boxes (defined in the

box-ordered linked-list) that surround the box containing particle i. If the nearest neighbor

index, j, for one of these particles is greater than i (j-ji symmetry), and either particle i or j

is active, then particle j is tested for interaction proximity to particle i. If all of these

conditions are true (j>i, i or j active, and Iri - rj I < 2h ), then particle j is added to the

nearest neighbor linked-list of particle i.

CALCULATIONS

The Noh Problem - The uniform implosion of an ideal (-y= 5/3) gas was conceived by Noh [ 10]

as a stringent test problem for shock codes. Initially, the gas is moving radially inward at unit

speed, unit density and zero internal energy. Noh found the analytic solution to be a shock

moving radially outward at speed 1/3. In spherical geometry the gas behind the shock has

particle speed 0, specific internal energy 1/2 and density 64. The value of 64 is due to a

16-fold increase from adiabatic compression and a 4-fold increase across a strong shock for a

monatomic gas. Our calculation used one-eighth of a sphere in three-dimensional Cartesian

coordinates and three reflecting planes. Particles were placed within this domain in a regula.

13



cubic array and then randomly perturbed with maximum excursion of h/8. The initial radius

of the particle cloud was 70. The smoothing length was set to I with I particle-per-h in each

coordinate direction giving roughly 200,000 particles, including ghost particles. Each particle

was given unit density, unit speed inward and zero internal energy. Results of the SPH

calculation are shown in Figure la where the density is plotted as a function of radius for each

particle at time = 48. Notice that all SPH particles fall on one curve showing that perfect

symmetry is achieved in the calculation. This is the result to be expected as there is no spatial

mesh which can bias the solution along gridlines. The shock is in the right place and the

density dip (energy spike) near the origin is kept small by the Noh wall-heating term. The

calculation took 8 hours to run on a CRAY2 machine. This is a relatively long time, we

suspect, compared to other methoos. The reason for the slowness is due to the implosion

nature of the problem coupled with our linked-list neighbor algorithm. As the gas continues

to move radially inward, the calculational time increases dramatically as the number of

interacting neighbors for each particle increases from 32 to 2000 because the particles are

piling up near the origin but the smoothing length remains fixed. An SPH calculation with

variable smoothing length [181 would prove much more efficient for this problem. For

explosions and rarefactions the variable smoothing length is often required in order to

maintain resolution in an expanding particle cloud. We also present results of the

"44"cylindrical" Noh problem in Figure lb. In this geometry the gas behind the shock has

particle speed 0, specific internal energy 1/2 and density 16. The calculation was run to

time=60 in two-dimensional Cartesian coordinates and required 10.000 particles and 30

minutes of CRAY2 time.

Cylinder Impact Test - Numerical simulation of the deformation of a metal cylinder resulting

from normal impact against a flat, rigid surface is often used to test constitutive models in

codes. There is ample experimental data and the tests are simple yet stringent. We have

modeled an ARMCO Iron cylinder with speed 221 m/s impacting a perfectly reflecting

surface using SPH. One-quarter of the cylinder and two reflecting planes were used to

14
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Figure 1. Density profile for the Noh implosion problem as a function of radius.
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model the cylinder. A third reflecting plane represented a perfectly rigid boundary. The

initial length of the Iron rod was Lo=2.54 cm and the initial diameter was Do=0.76 cm. The

smoothing length was chosen to be h=0.076 cm with 2 particles-per-h in each coordinate

direction. A total of 24,455 particles were used. The yield strength (Yo) and shear modulus

(gt) of the Iron were taken to be 6 and 0.1 Kb respectively. An initial density of 7.89 g/cc was

used. Figure 2 shows the final shape of the computed cylinder (2a) next to a photograph of the

experimental [191 article (2b). The the ratio of final length and initial length of the actual

experimental rod was LelLo = 0.78. The calculation gave Lc/Lo = 0.79. The diameter ratios

were De/Do = 1.80 for the experiment and Dc/Do = 1.55 for the calculation, showing that the

simulation has underestimated the bulge near the base of the rod. The calculation required 3

hours of CRAY2 time. This relatively long run time is due to the small impact speed (0.221

km/s) compared to sound speed in iron (4.0 km/s) which controls the time step.

Hypervelocity Impact - Figure 3a shows the SPH calculated debris cloud resulting from the

normal impact of a 3 g Copper disk (11.18 mm dia x 3.45 mm thick) on a 2.87 mm thick

Aluminum bumper plate at 5.55 km/s. Figure 3b is a radiograph of the actual cloud taken

from Piekutowski [201. The experimental impact was not exactly normal, the Copper disk

having a 5.4 deg yaw. We took the smoothing length to be h=0.20 mm and 2 particles per h

giving 10,000 particles total in the calculation. A Gruneisen equation of state with Copper

Hugoniot Us=O.39+1.5Up and Aluminum Hugoniot Us=O.53+l.5Up was used to describe the

lead in compression. The shear modulus (g.) and yield strength (Yo) for Copper was taken to

be 0.46 Mb and 4.50 Kb respectively. For Aluminum we used p.=0.25 Mb and Yo=5.50 Kb.

The calculation took 900 cycles and 1.8 c.p.u. hours on a CRAY2. The peculiar shape of the

Aluminum debris cloud is captured by the simulation. Figures 3c and 3d show three-

dimensional views of the particles. Figure 3c shows only Aluminum bumper plate particles

and 3d shows only Copper projectile particles.
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a. Calculation

b. Experimental photograph [19].

Figure 2. Cylinder impact test.
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Figure 3. Debris cloud for the impact of a Copper pellet on an Aluminum bumper plate.

18



DISCUSSION

The three-dimensional Smoothed Particle Hydrodynamics code MAGI has been described

and three calculations presented. Results of the calculations are in reasonably good

agreement with experiment and analysis showing that SPH can be applied to low speed

impacts as well as hypervelocity collisions where material strength is unimportant.

Advantages of the method are its robustness, conceptual simplicity, ease of adding new

physics, a natural treatment of void and the ability to handle high strains in a pure

Lagrangian frame. Tracking of debris clouds resulting from hypervelocity impacts is a

particularly important advantage of the method. The run times appear to be larger than for

Eulerian codes although no direct comparisons have been made. A variable smoothing

length formulation of SPH would dramatically improve the running time for the Noh

implosion and the lead impact problems presented here. More fundamentally, SPH appears

to be readily parallelizable. If so, a one or two ot.•er of magnitude speed up is possible on

todays massively parallel machines. This is an important area of research.
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